The History of Preventive Medicine.

By Ricka Sapero. (1915)

The history of preventive medicine can be traced to very remote times. The necessity of sanitary measures for preventing the spread of contagious diseases was realized by Moses, and many highly valuable measures were formulated by him as laws. Many other early medical and ecclesiastical writings contain hygienic advices.

Inoculation of human smallpox, though in very rude and primitive form, was practiced in ancient times in Hindustan and China. Immunization against the disease was unknown in Europe, and in the XVI, and especially in the XVIII century, this terrible epidemic disease reached its highest point of distribution and intensity, sweeping away every year 30,000 by death in France, 26,000 in Germany, etc., until the method of inoculation was brought to Europe through Turkey.

At last, at the end of the XVIII century, Edward Jenner discovered the method of vaccination, which replaced inoculation and was beginning to be practiced on a large scale in all countries.

In Europe in the XIII century, Theodore of Boulogne advised that wounds be treated with hot wine fomentations, the progenitor of modern antiseptics, but as nothing was known of the direct cause of disease, methods were empirical, and medicine was almost powerless against other contagious diseases. Surgery was in an unsatisfactory state, in spite of some skilful surgeons; to decide upon an operation was to sign a patient’s death warrant, because the suppuration of wounds, gangrene and other complications, following operations, almost invariably resulted in death.

The cause of these disasters was unknown; the then accepted theory of spontaneous generation did not leave place for any radical treatment.

The reorganizer of science, the good genius of mankind, was the great Louis Pasteur. In 1842, at the age of twenty, he attended in Paris the lectures of Dumas, a celebrated professor of Chemistry at Sarbome. These lectures inspired him with enthusiasm and thirst to learn more and to devote himself to scientific research. Through his first work and discoveries in crystallography, the basis of modern stereo-chemistry, he early became known to the scientific world. A number of other great discoveries followed.

1. He established the fact that fermentation is an ordinary chemical transformation of certain substances, brought about by living cells.
2. That putrefaction is a form of fermentation due to the presence of micro-organisms, and that similar changes were noted in secretions of a wound, and that suppuration in wounds was of a similar nature.

From that time the revolutionizing idea of the relation of a micro-organism to disease began to be understood; hygiene began to develop and light was thrown upon preventive measures.

Finally, in the spontaneous generation controversy, he proved that not all bacteria are destroyed by boiling, and that in a completely sterilized organic liquid bacteria do not develop. Stimulated by these discoveries, Lister commenced his great work upon the power of germicidal substances to render wounds aseptic. He and Koch continued Pasteur’s work to show the relations of micro-organisms to in-
flamboyant and suppuring conditions of wounds.

In 1850, Davaine discovered the anthrax bacillus, and in 1863 he proved this organism to be the cause of anthrax disease, or splenic fever. Pasteur investigated this further and conquered this disease by introducing the method of vaccination in splenic fever. He conquered also the chicken cholera by the method of successive inoculations of the attenuated virus, which produced immunization. The phenomenon of immunity was established later by Pasteur's pupil, the great scientist, Metschnikoff.

Finally, the discovery of vaccination against hydrophobia crowned Pasteur's immortal fame. "A day will come," said Pasteur, "when easily applied preventive measures will arrest the scourges which suddenly desolate and terrify populations, such as yellow fever, bubonic plague, etc." His anticipations were justified and he lived to see the discoveries of organisms of almost all putrid and contagious diseases: for instance, in 1880, Koch discovered the bacillus of typhoid fever; in 1882, the tubercle bacillus; in 1887, the comma bacillus of cholera. In 1883 the bacillus of diphtheria was discovered by Klebs and isolated by Loeffler. The bacillus of bubonic plague is associated with the names of Yersin and Kitasato. The discovery of the organisms of gonorrhea, dysentery, and finally, in 1905, the specific organism of syphilis, are to be credited to Schaudinn and Hoffmann.

Pasteur saw the development of blood serum therapy advocated by Behring, Roux, Kitasato and others; he saw the realization of his hopes—the great work, which he had begun, taken up by new, fresh forces, and in 1895, at the age of 73, he peacefully passed away.

The brilliant series of discoveries of the XIX century was not due to chance.

In one of his lectures Pasteur said: "In the field of observation chance only favors the mind which is prepar-
ed." This can well be applied to Pasteur himself, whose discoveries were preceded by careful study, indefatigable labor, and complete self-sacrifice.

Progress in Medical Teaching.

BY ALICE WELD TALLANT, M.D.

When we remember how early the American colonists supplied means of education by the founding of academic colleges, it is somewhat of a surprise to learn that the first American medical school came into existence only eleven years before the Declaration of Independence, in 1765.* It is true that as early as 1770, informal classes and demonstrations were in operation, and Philadelphians may be glad to know that even at that time their city was considered the chief medical center. It should be still more a matter of pride to them that it was under the auspices of the College of Philadelphia that the first medical school was established by the creation of a professorship of the Theory and Practice of Medicine. The first occupant of the chair was John Morgan, who had himself proposed this new departure to the College. The facilities for medical education were rapidly extended by the addition of professorships of Anatomy and Surgery, Chemistry and Materia Medica, and more important still, clinical opportunities were secured through an arrangement with the new Pennsylvania Hospital, which made Bond, one of its founders, the professor of Clinical Medicine in the College. This early recognition of the necessity of a close hospital connection is particularly interesting as showing the wise foundation which was laid for medical education in America.

Other colleges were not slow to follow in the trail blazed by this pioneer, and during the nineteenth century their numbers increased phenomenally, hand in hand with the growth of the new country and even out of pro-
portion to it, until they became a source of utter amazement to foreign educators. Unfortunately, as was natural enough, there arose a certain proportion of colleges organized for money-making rather than for the advancement of medical science, and these inferior schools served to keep down standards and throw discredit on the whole scheme of medical education in America. The widely divergent requirements in different parts of the country, the absence of supervision of medical education, and the lack of co-operation among the colleges, all played a part in bringing about this condition of things; while the establishment of the State Boards of Medical Examiners, the creation of the Council on Medical Education and the formation of the Association of American Medical Colleges have been steps along the road to improvement. The final solution would seem to be the adoption of a definite standard of medical education which will apply to the whole country, and thus enable physicians to pass from state to state without the continual repetition of examinations which is still so often necessary. There are, of course, difficulties in the way of such a plan, but surely they are not insuperable.

That the comprehensive course detailed in the college announcements of to-day is a far cry from the curriculum of the early days is of course a self-evident proposition. Most impressive are the tremendous advances which have been made even within the life-time of our older physicians by the unfolding of the study of bacteriology and its practical application in the development of asepsis. All this has been made possible by the growth of a spirit of scientific investigation, which could see the value of experimental work and look ahead through years of patient endeavor to the results of the search after truth. It is this spirit, entering into medical education, that has given the great impulse to the development of the so-called laboratory subjects which are now so important a part of every medical course, and raised laboratory methods to their present state of efficiency.

As the courses are now arranged in the medical schools, the laboratory subjects occupy the first two years, while with the third year comes a sudden change to the clinical branches. This is apparently as satisfactory a plan as can be now devised, since it is, of course, necessary to have the thorough grounding in these fundamental sciences before taking up the more strictly medical part of the course. It is unfortunate, however, that the change must be so sudden and complete, with only perhaps a course in physical diagnosis at the end of the second year, to bridge the gap. Students for the most part look forward to the practical work of the last two years, partly because it brings them at last into contact with people, but more because, as they say, they feel that they are “doing something.” Their feeling is a natural enough result of the tradition handed down through many centuries that the physician’s business is to heal the sick. But no one who has observed the trend of medical science in the present day can doubt that with every passing year it is growing to be a more and more important part of the physician’s business to heal the sick before they are stricken—a paradox which is being turned into a fact by the rapid rise of the science of preventive medicine. Nor can it be questioned that the new science is in large measure a product of the application of the knowledge patiently acquired by careful experimental work in the laboratory.

It is, therefore, the part of the medical schools of to-day, not simply to teach these laboratory branches, and teach them well, not only to stimulate in their students the spirit of independent thought and investigation. They must show forth clearly the bearing and the aims of the science of the laboratory years, and so correlate it with the practical work of the clinical years that the gap between them
shall be not only bridged but filled in, and the two parts of the course welded into one great organic whole.

*The Carnegie report on Medical Education in America, by Abraham Flexner, is the authority for the historical facts given in this paragraph.

Massage.

HANNA KINDBOM, M.D.

(Continued.)

Massage of Arm.

Muscles:

Deltoid:

Origin: Clavicle, acromion and spine of scapula.

Insertion: Middle of shaft of humerus.

Nerve: Circumflex and subscapular.

Action: Rotates humerus inwards.

Biceps:

Origin: Long head: Glenoid cavity.

Short head: Coracoid process.

Insertion: Tuberosity of radius.

Nerve: Musculo-cutaneous.

Action: Flexes and supinates forearm.

Coraco-Brachialis:

Origin: Coracoid process scapula.

Insertion: Inside of shaft of humerus.

Nerve: Musculo-cutaneous.

Action: Draws arm forward and inward.

Brachialis Anticus:

Origin: Lower shaft humerus.

Insertion: Coracoid process of ulna.

Nerve: As above.

Action: Aids in flexing elbow.

Triceps:

Origin: External and internal heads near musculo-spiral groove, shaft of humerus.

Middle head, lower edge glenoid cavity.

Insertion: Olecranon process of ulna.

Nerve: Musculo-spiral.

Action: Extends forearm.

Flexors and Extensors of Forearm.

Origin: Internal and external condyles at elbow.

Insertion: Into digits and wrist bones.

Action: To extend and flex wrist and fingers.

Nerves: Ulnar and median.

Indications for Massage.

1. Muscular rheumatism.
2. Neuritis.
3. Paralysis.
4. Diseases of muscles and injuries to nerves.
5. Fractures, luxations and subluxations.
7. To relieve congestion of head and chest.

In giving massage to the arm all muscles on back and chest involved in the movement of the arm must be considered. The most important parts are the axillary and antecubital regions, the palm over the arterial arches, and the different joints.

The Hand.

In cases of contractures of fingers, naturally the whole forearm is of importance.

The manipulator follows the different tendons to their respective muscles.

In cases of ankylosis very little can be done.

Subluxations: Are treated at earliest stage, but luxations not until about 8-10 days after injury.

The Elbow and Wrist.

Fractures: After the swelling has disappeared, the arm is supported with a splint and gently manipulated to give necessary exercise to the muscles and to prevent adhesions.

This treatment can be given to any fracture where muscles are freely used.

The above treatment for luxations and subluxations can also be applied to any joint in the body.
Injury to the Circumflex Nerve:

Results not only in the wasting of the deltoid muscle, but generally in most muscles of the upper arm, as they are not brought into proper play.

Much can be done with proper massage and exercises together with electricity.

Paralysis.

In paralysis following cerebral hemorrhage, acute poliomyelitis and neuritis massage is of great value in maintaining the nutrition of the affected muscles, even when power is hopelessly lost it tends to retard development of contractures. Mechanical treatment, however, should not be instituted in these cases until all signs of irritation have subsided. (Stevens).

Rheumatic Infiltrations:

Treated in the same manner as to the back.

Manipulations:

1. Effleurage: With one hand alternately extending down shoulder and chest.
2. Friction to fingers: Each finger is taken between thumb and forefinger and manipulated toward the hand.
3. Back of Hand: The sides of both thumbs are used, friction being alternately given between metacarpal bones.
4. Palm of Hand: Deep friction with thumbs over superficial and deep arches, also muscles of thumb.

Forearm.

1. Friction: with thumbs and tips of fingers deep and slow to elbow.
2. Kneading: with both hands to elbow.
3. Wringing: as the name implies with both hands.
4. Sawing: as the name implies with one hand.
5. Tapotement: hacking and slapping with one or both hands.

Antecubital Space:

Friction: Deep extending to shoulder.

Arm: See Forearm.

All manipulations extend over trapezius and the pectoralis muscles and deep in the axilla.

Vibration: Especially given along the different nerves or the hand is taken firmly and the whole arm vibrated.

Abdominal Massage.

Indications: Constipation, obesity, sluggish digestion, dilated stomach, sluggish liver, prolapsed colon, intestinal adhesions, tympanitis, (not if peritonitis present) flatulence and relaxed abdominal walls.

Contra-indications: Pregnancy, tumors, typhoid fever, wounds, nervous peristalsis, inflammatory conditions.

Rules:

1. Locate the viscera and ascertain that they are in proper position.
2. Be sure the bladder is empty.
3. Give massage at least two hours after meals except in sluggish digestion, when it may be given one-half hour after meals, and if the gastric secretions need special stimulation one-half hour before meals.
4. Give manipulations gently but very deep, except for obesity when the fat is picked up and kneaded.

Effleurage: From stomach to sigmoid flexion following the alimentary canal. Use both hands alternately or together.

Friction: Use one hand, the tips of the fingers, the same route as above.

Kneading: The small intestines are manipulated with both hands in a manner similar to kneading dough.

Shaking: (1) The right hand is placed over the umbilicus and firmly shaken. (2) The hand is pressed firmly over sigmoid flexion, hand held steady and still, and a rotary movement given with forearm. (3) The same movement is given in the umbilical region.

Hacking: With both hands firmly
and without elasticity so as to produce a shaking of the viscera.

Vibration: The right hand is placed between the umbilicus and the fundus uteri and vibrated.

Stroking: Place the hands around the waist and draw them forward towards Poupart's ligaments.

Special Massage to the Colon.

Friction: Use the finger tips of the right hand, press down deeply and give rotating friction from cecum to sigmoid flexion. Each spot must be manipulated for at least one minute then the fingers moved forward without lifting them. This is done to loosen impacted feces and accumulated gases and force them forward.

Corkscrew Friction: Used when the feces are hard and impacted. The hand is closed as for boxing and the forefinger moved as a corkscrew, deeply but gently as it is painful.

Kneading: Use tips of fingers and draw them up to the colon, first one then the other without lifting one until the other is pressed down.

Tapping: Over colon as to the spine.

Vibration: Given to entire colon and most useful in flatulency.

Prolapsed Colon: Both hands are pressed down (tips meeting just above the bladder). The colon is forced upwards while the patient exhalcs forcibly.

Special Massage to Stomach.

1. Locate stomach: after general abdominal massage has been given grasp the ribs over gastric region and give a firm shaking, then stroke deeply towards the pylorus while the patient is forcibly exhaling.

2. Same as above except that the vibration is given in place of shaking.

3. Hacking over the stomach as to abdomen.

Above massage is given in case of dilated stomach due to overeating or nervous disturbances, but *never* if any obstruction of the pylorus or hourglass contraction is present. It is also given in impaired motor power and anatomy of the glands. In the latter condition the massage should be given one-half hour before eating, in the two first mentioned conditions one-half hour after eating.

Special Massage to Liver.

The same as to the stomach, commencing at the left lobe towards the gall-bladder.

Massage may also be given to the gall bladder if it can be correctly located, and calculi not large or numerous, forcing its contents gently towards the pancreas. This massage however should only be attempted by an expert and one with thorough knowledge of anatomy and then only by the physician or surgeon's advice.

(To be Continued.)

Woman and The Ballot.

(Written specially for The Iatrian.)

The fundamental importance of the ballot for women is not what the women will do with the ballot but what the ballot will do for women.

1. What will the ballot do for women? It will exert a steady, strong educational pressure upon them. Require women to share in the decision of public questions and they will become interested in those questions and informed about them. The state cannot afford to leave half its citizens untrained in public affairs, it cannot secure that training unless it imposes the responsibility that makes such training necessary.

 It will create a new ideal for women. No longer the ideal of knowing and caring nothing but her family and her house was the old ideal; to know and to care about her family and her house and to be a good citizen is the new ideal. We learn by doing. Give women the franchise and steadily and surely she will grow in civic judgment and improve her contribution to the common welfare.

2. What will women do with the ballot? They will purify politics. Pessimists scoff at this but the recall
of the morally unfit Mayor of Seattle is proof positive that women will not permit unworthy men to be elected to positions of trust. A few years ago Lyman Beecher Stowe, while preparing an article treating of woman suffrage, interviewed all the members of Congress from the then four suffrage states of Wyoming, Idaho, Utah and Colorado. While some of these men acknowledged that they had vigorously opposed the introduction of equal suffrage, they all agreed upon this point as to its effect: "That it had prevented even the nomination of men of personally disreputable character, because the women voters were sure to scratch them on the ticket; in other words they did not show the masculine loyalty to the straight ticket. What they were interested in was straight candidates."

Women will use the ballot to better industrial and social conditions. They will secure the passage of proper laws for working women, stringent child labor laws, good compulsory education laws, laws to ensure us pure food at the lowest possible cost, unpolluted water, clean streets, public parks and play grounds, and all those things that make this country a better and safer place in which to live. Women are vitally interested in all these matters, perhaps even more so than men, because they are the natural housekeepers and these things deal with the community housekeeping.

Some good laws are enacted in women's and children's favor even now when women do not have the vote but at what a loss of time. The women of Massachusetts fought many years before the law was passed that made mothers equal guardians with fathers of children. The women of Colorado passed the same law the first year they were enfranchised.

Do you think the 13,000 women school teachers of New York City would have had to work six years to get the Equal Pay Bill passed if they had had the ballot?

Dr. Wm. H. Allen, the Director of the Bureau of Municipal Research and National Training School for the Study and Administration of Public Business, states in the preface to his new book "Woman's Part in Government," that one of the women's chief functions in government is "to influence consciously and directly public opinion and official action." How can woman do this without the ballot? Today woman—especially the working woman—finds that she needs the ballot just as much as her brother does. She needs it for her protection, for her development, and the time is not far distant when she will have it.

"Come, shoulder to shoulder, ere the world grow older, The cause spreads over land and sea, The earth shaketh and fear awaketh, And joy at last for thee and me."

Florence E. Clarke.

Snippets.

There may be some argument as to the effect of an automobile on health, but, nevertheless, it is responsible for many a run-down condition.

A dollar in the pocket is worth two on the brain.

The truth is all right in its place, but he who tells the truth for no other purpose than to make trouble is as bad as a liar.

If a man is as stubborn as a mule, don't talk behind his back.

We are all travelers in what John Bunyan calls the wilderness of this world and the best that we find in our travels is an honest friend. He is a fortunate voyager who finds many. We travel indeed to find them. They are the end and reward of life.—Robert Louis Stevenson.
State Board Questions, December, 1912.

Physiology, Pathology, Bacteriology.

1. State what an examination of the blood would elicit in; (a) anaemias (primary, secondary and pernicious), and (b) leukaemia. Give in detail the technique in making the blood examination for these conditions.

2. Given a case of bronchopneumonia (catarrhal pneumonia), detail the local conditions, the etiology (in cases where the process is infectious) and state the effect on the normal functions of the lungs and metabolism.

3. Given a case of acute parenchymatous nephritis; name the pathological conditions present in the kidneys and state how these conditions would interfere with the normal functions of the kidney. Name the abnormal organic constituents that might be found in the urine in this disease.

4. Describe any one lesion of the liver showing how this lesion interferes with the normal functions of the liver and the effect of such interference upon digestion.

5. Describe the lesion in tabes dorsalis (locomotor ataxia) giving the usual cause and show how this lesion interferes with the normal functions of the cord.

6. Name two of the more usual diseases that may have as sequelae endocarditis, resulting in an organic heart lesion: show how in the case of any one such organic heart lesion the normal functions of the heart may be interfered with.

7. Name and describe two pathological lesions which may have as a symptom, haematemesis. What information might an examination of the stomach contents give in differentiating the above conditions?

8. Differentiate as far as possible typhoid fever from appendicitis by means of laboratory tests.

9. In carcinoma of the tongue name the usual variety. Describe its gross and its microscopical appearance and give the avenue and usual point of metastasis.

10. In severe ulceration of the cornea what changes may occur in the structures involved and what disturbed function may be permanent. Name three micro-organisms most frequently found and outline a method of detecting and differentiating them.

Gynecology and Obstetrics, Hygiene and Preventive Medicine.

1. What are the dangers of abortion (criminal, during the first three months); in case of such abortion how may these dangers be overcome?

2. Given a pregnant woman (the first three months) of doubtful intra-uterine (normal) or extra-uterine origin, describe in detail how you would determine the correct diagnosis; in case it proved to be extra-uterine pregnancy how would you treat the case? (omit descriptions of operations).

3. Should you be called upon to deliver a woman at full term of pregnancy, discuss the status of the use of the vaginal douche, the use of an anesthetic and the use of ergot.

4. Should a woman with a deformed pelvis (early in pregnancy)
engage your services, by what various means might you aim to secure her a living child? In each instance (method) what would be the limits of measurements of the conjugate-vera (true)?

5. If a woman in labor should suddenly develop the symptoms of collapse or shock, name three causes which may be responsible for the condition. How would you recognize the one present, and how would you manage the case in event of each of the three causes? (omit description of operation).

6. How would you deduce the presence of uterine cancer: (a) early (b) late in a patient? State the various methods of treatment. (omit descriptions of operations).

7. What dangers may threaten the eyes of a new born infant? Discuss the prophylaxis and treatment in such a case.

8. Given a room just vacated by a person suffering from a serious infectious disease, by what methods would you treat the room and how soon would you allow the room to be occupied? Describe the method in detail.

9. Should a house become contaminated with sewer gas, what are the dangers to inmates? What steps would free the house from the gas? Detail the means of preventing its re-contamination.

10. What dangers attend the proximity of stables to dwellings? How are these dangers guarded against? What methods should attend the disposal of the manure?

Anatomy and Surgery.

1. What are hemorrhoids? State varieties and the blood vessels involved in each. Outline two methods for the cure of hemorrhoids.

2. In fractures of the clavicle, state the anatomical reasons for the displacements of the fragments.

3. Enumerate the injuries that might be received from a fall upon the outstretched hand: outline the treatment of any two forms selected.

4. Enumerate the various forms of abdominal herniae: outline the technique for the correction of any one form, giving the surgical anatomy of part selected.

5. State the conditions that might require trephining the skull; outline the technique of this operation.

6. In the case of collections of fluids within the chest; outline two surgical methods for relief, with reasons for selecting each.

7. What are the early symptoms of hip joint disease? And what is their anatomical explanation?

8. Outline two methods for the cure of ulcer of the leg. State conditions that tend to aggravate or perpetuate ulcer of the leg.

9. Describe the ambulatory treatment of a sprained ankle.

10. Enumerate the various forms of fracture that might occur at or about the elbow joint: state the appropriate splints for three of the more usual forms of these fractures, with reasons for selecting each.

(To be continued.)
Beginning with the season of 1914-15 the Woman's Medical College of Pennsylvania "will require for admission not less than one year of college credits in chemistry, biology and physics, and a modern language, or two or more years in a college of liberal arts, in addition to the accredited four-year high school course." (This is an extract taken from the minutes of the last annual meeting of the American Medical Association.)

This step in advance conforms with the minimum standard of the American Medical Association for Colleges in "Class A."

At a recent meeting of the President of the Bureau of Medical Education and Licensure and the Deans of the Medical Schools of Pennsylvania, our school voted in favor of making the above a state requirement.

Also the representative of our faculty was instructed to favor as a legal requirement either one year's hospital internship or a year of approved postgraduate instruction before the admission of a graduate in medicine to the examination for licensure.

There was a physician long ago, Who hired a man to shovel his snow; But instead of a shovel he gave him a hoe, For he was a "hoe-me-a-path," you know.

Lantern Equipment for the Lecture Room.

Dr. Rupert of the Department of Practice has secured through friends a sum sufficient to equip a modern lantern, which has been installed in the west lecture room. A series of slides has been prepared, illustrating gross and microscopic pathology, and normal and abnormal physical signs. The College has also a lantern for direct projection of microscopic objects, which will be arranged so as to be used in conjunction with the ordinary lantern. Several of the members of the upper classes will be instructed in the methods of operating the lantern, so that the demonstrations can be made at any time during a lecture or quiz.

An important part of the installation was the fixing of curtains for darkening the room. This work was also carried out with funds secured by Dr. Rupert.

Lantern demonstrations are extensively used now in teaching work and popular lectures, but it will not be long before the moving picture will be extended from the cheap-show field, in which it is now so prominent, and adapted to regular class room work. Even now several firms are offering, at a comparatively low price, projection machines for use with the new film which is practically incombustible. Heretofore, one of the most serious objections to the use of moving-picture apparatus has been the high combustibility of the nitro-cellulose film. Recently a film said to be an acetyl-cellulose has been invented and the fire risk is eliminated.
Alumnae Notes

The highest average made by any graduate in medicine at the June State Board examination in Pennsylvania was obtained by Dr. Frances J. Heath, 1912, no other candidate having even reached a mark of ninety.

Dr. Katherine R. Sherk, 1910, was married on October 9th, 1912, to Dr. Selden Sylvester Cowell, of Huntingdale, Pennsylvania.

At the annual session of the Medical Society of Pennsylvania in Scranton, there was held an open meeting for women. In this meeting several of our graduates took part. Dr. Jane R. Baker, former superintendent of the Chester County Hospital for the Insane, presented a paper on "School Inspection and the needs of Defective and Feeble-minded Children." Dr. Alice Seabrook told of the work of the Psychological Clinic of the University of Pennsylvania and other agencies in Philadelphia for the proper treatment of unfortunate defective children, while Dr. Amelia A. Dranga prepared a list of helpful books on the subject of how to teach children the origin of life.

Dr. Alice Weld Tallant read a paper entitled "A Study of Breech Presentations."

At a meeting of the Lycoming County Medical Society held at the Williamsport Hospital, September 13th, Dr. Ella U. Ritter presented a paper on the "Significance of Pneumococcal Hemorrhage."

At a meeting of the Philadelphia County Medical Society held on September 18th, Dr. Rosa Wiss, of Meridian, Miss., read details of a marked case of chronic articular rheumatism which she had cured by persistent cataphoresis with salicylates.

The second annual commencement of the Training School for Nurses was held in the East Lecture Room of the college building on Friday evening, November 8th. Dr. Marshall, President of the Board of Managers, presented the diplomas to the following graduates:

- Mrs. Bartron, Miss Robson, Miss Wilson, Miss Worrall and Miss Dawson.

On November 23rd, the services of the resident physicians were changed, and the following is the present status:

- Main Hospital:
 - Senior—Dr. Blair.
 - Junior—Dr. Bullock.
- Maternity:
 - Resident—Dr. Field.
- Barton:
 - Interne—Dr. Slattery.
 - Extern—Dr. Knowles.

He was an impecunious, seedy, out-at-the-elbows person, and the doctor, when he prescribed for him, knew better than to expect a fee.

"For the inflamed eyes," said the benevolent physician, "dissolve as much Boracic Acid as you can put on a ten-cent piece in half a glass of water."

"Thank you, doctor," murmured the patient, turning away. A moment later, however, the office door was opened and the patient sidled in.

"Say, doc," said he, with an ingratiating smile, "where do I get the ten-cent piece?"

Widow—"Do you understand the language of flowers, Dr. Crusty?"

Dr. Crusty—"No, ma'am."

Widow—"You don't know if yellow means jealousy?"

Dr. Crusty—"No, ma'am. Yellow means biliousness."
Woman's Hospital Notes.

The regular meeting of the Medical Society of the Woman's Hospital was held on Monday evening, November 18th. The program was as follows:

Dr. Mathilda Osborne:—“Study and Diagnosis of Mental Deficiency. Binet-Simon Tests.” Exhibition of Patients.

Dr. Madeline Hallowell (by invitation):—“The Problems of Mental Deficiency, and Their Relation to the Profession and the State.” Lantern demonstrations.

Dr. Eleanor C. Jones:—“Prevention of Mental Deficiency.”

All who attended this meeting were most enthusiastic in their praise of the various papers.

It may be of interest to learn that Dr. Hallowell is in large part responsible for the framing and passing of the New Jersey State Law in reference to the care of epileptic and mentally deficient women and children. She has shown herself to be a most able worker along these lines and many are watching her progress with interest and approval.

Around the College.

We all take off our hats to the Sophomores for the splendid entertainment they gave us on Saturday evening, November 2d, 1912.

At eight o'clock, the Misses Jane Boudart, Ella Rynkiewicz and Dorothy Ollswang received the guests who came masked in various sorts of costumes. The gymnasium itself was masked; corn was twined about the pillars, lanterns were hung across the room and a number of screens in one corner hid a “hurdy gurdy.”

After the reception, the “sophs” gave a very delightful little play entitled, “Suffering Angina.”

Program:

Time—present.

Synopsis of scenes.

Scene I—Beautiful Angina Sophomore is brought delirious to the College Hospital. The interns think they discover the cause of her illness.

Dr. Young Alfred
Dr. White Cornelius

Angina has a dream in which weird visions present themselves.

Scene II—She sees the Freshmen Class.
Dr. Pacifier—Miss Humpty Dumpty.
Dr. Grizzly Bear—Miss Auto.
Dr. Whisperine—Miss Arkansaw.
Dr. Anastamoses—Miss Lanky Daisy.
Dr. Anybody Here.
Billy Rubin—Miss Trinity Chimes.
Billy Verden—Miss Sofa, Miss Don’t Careadarn, Miss Pfumders, Miss Rainetta Cogt.

Scene III—Soph. Class sorrowfully appear.
Dr. Tabulata Sophs A Stiff

Scene IV—Angina’s malady is diagnosed by a famous specialist.
Dr. Can Askeni Juniors
Dr. O. V. ButcherSeniors

Sophs thirsting for Knowledge.

After this clever piece of acting, everyone rose and sang “Alma Mater” written by a student of the Class 1903.

The guests then adjourned to the gymnasium where dancing was the main feature. Refreshments were served between the dances, but the “hurdy gurdy” played all the time. It was almost morning before the last guest went home.

Thanks, Sophomores, for a jolly good time.

The freshman class was entertained on Saturday evening, October 26, 1912, at the home of Rose L. Weintraub, 910 N. Broad street.
The first two meetings of Beta Chapter, Zeta Phi Fraternity, were held with Dr. Reddie and Mrs. Hooker Davidson. Interesting programs were rendered on both occasions.

We regret to see Dr. Seabrook still carrying her arm in a sling. Her siege of neuritis has been a long and painful one and she has the sympathy of all her friends.

Dr. Mary Baer, '94, who has been working in India for sixteen years, is now in Philadelphia taking a postgraduate course in Gynecology and the Practice of Medicine.

Dr. Rupert needn't worry about her quizzes being a success. Any such progressive spirit as she has displayed by adding "movies" to the course deserves our best efforts at cooperation. If the students attend these exhibitions as conscientiously as they do those on Columbia avenue requiring ten cent admission fees, Cornelius will have to include a few more rows of seats in his dusting campaign.

APE OWE 'Em

When fur stews can this sill leer I'm Toot rye tomb ache theme e'en ink Lear, Youth inked wood but bee weigh sting thyme; Use eh, "It's imp lean on scents, shear!"

Gnome attar: Anna lies align! Nation mice lender verse says knot— Fork rip tick poet real Ike mine, How Aaron weal, demesnes allot! Deems Taylor in the Century.

A woman went marketing in Fan-euil Hall market. She stopped where were displayed fowls so aged as to seem almost unsalable. "What do you sell these for?" inquired the woman, wondering if the dealer would dare call them chickens. "We usually sell them for profits, marm," was the curt reply. "Oh," said the woman, "I thought they were patriarchs."

The Art of Elocution.
The noble songs of noble deeds of bravery or glory Are much enhanced if they're declaimed with stirring oratory. I love sonorous words that roll like billows o'er the seas; These I recite like Cicero or like Demosthenes.

And so, from every poem what is worthy I select; I use the phrases I like best, the others I reject; And thus, I claim, that I have found the logical solution Of difficulties that attend the art of elocution.

Whence come these shrieks so wild and shrill? Across the sands o' Dee? Lo, I will stand at thy right hand and keep the bridge with thee! For this was Tell a hero? For this did Gessler die? "The curse is come upon me!" said the Spider to the Fly.

When Britain first at Heaven's command said, "Boatswain, do not tarry; The despot's heel is on thy shore, and while ye may, go marry." Let dogs delight to bark and bite the British Grenadiers, Lars Porsena of Clusium lay dying in Algiers!

Old Grimes is dead! Ring out wild bells. And shall Trelawney die? Then twenty thousand Cornishmen are comin' thro' the rye! The Blessed Damozel leaned out—she was eight years old, she said! Lord Lovel stood at his castle gate, whence all but him had fled. Rise up, rise up, Xarifa! Only three grains of corn! Stay, Lady, stay! for mercy's sake! and wind the bugle horn. The glittering knife descends—descends— Hark, hark, the foeman's cry! The world is all a fleeting show! Said Gilpin, "So am I!"

The sea! the sea! the open sea! Roil on. roll on, thou deep! Maxwelton bras are bonny, but Macbeth hath murdered sleep! Answer me, burning shade of night! what's Hecuba to me? Alone stood brave Horatius! The boy—oh, where was he?

Y. W. C. A. Meetings for December.

On Thursday evening, December 5th, Mrs. Mulford will tell of her work with Pundita Ramabai in India. Deaconess Goodwin will speak on December 12th. Miss Dyer will lead the Christmas meeting, on the evening of December 19th.

From British Examination Papers.

Louis XVI was gelatinized in the Reign of Terror.
Gender tells whether a man is masculine, feminine, or neuter.
A vacuum is a large empty space where the Pope lives.
Geometry teaches us about angels.
Parallel lines cannot meet unless you bend them.
A deacon is the lowest kind of Christian.
An abstract noun is something that you cannot see when you are looking at it.

\[\text{N}_2\text{O}. \]

"Are your neighbors obliging?"
"Sure, they always let me use my telephone when I want to."

Interne to Junior: "Have you ever seen a congenital hydrocele?"
Junior (eagerly): "No!"
Interne: "There's one in Maternity Building if you would care to go over and see it."
Junior (whispering excitedly): "Has she been delivered yet?"

Mary met Emily on the street. They had not seen each other for many years. "Why, how do you do!" exclaimed Mary, effusively, topping off the salutation with a few vague pecks at Emily's face.
"Now, this is delightful," said Emily, who was older than Mary. "You haven't seen me for eleven years, and yet you know me at once. I couldn't have changed so dreadfully in all that time. It flatters me."
"Said Mary: "I recognized your hat."

"She never worked but moments odd,
Yet many a bluff worked she."
[Is she Lee?]

Rev. Stove Pipe—"How dare you swear before me?"
Ashman—"How was I to know you wanted to swear first?"

Patient—"I've been awfully troubled lately, Doctor, with my breathing."
Doctor—"H'm. I'll give you something to stop that."—Punch.

McLatchy (looking at college picture)—"Say, Gottshall, don't I look like you there?"
Gottshall—"No, I think it's a very good picture of you."
McLatchy (to bystander)—"Did you ever see me look as sour as that?"
Miss Gottshall is ready to distribute the box of lemons on demand.

Fresh—"Oh, Cutie, I got a hundred!"
Cutie—"You did? What in?"
Fresh—"I got 40 in Histology and 60 in Chemistry!"

Mary (Knowles) had an auto car,
She bought some gasoline,
She lit a match to find the tank,
And hasn't since benzene.

Soph—"Did you ever take chloroform?"
Fresh—"No, who teaches it?"